
An Optimal Bit-counting Algorithm

MARILYN MACK I, GENNADI M. LAPIR 2, SIMON BERKOVICH s

National Aeronautics and Space Administration,

Goddard Space Flight Center
Code 585 / Code 933

Greenbelt, MD 20771

marilyn.j.mack@gsfc.nasa.gov

ZERES GmbH Universiteatstrasse 142,

44799 Bochum, Germany,

lapir@zeres.de

Department of Computer Science,

School of Engineering and Applied Science,
George Washington University,

Washington, DC, USA,
berkov@seas.gwu.edu

This paper addresses the omnipresent problem of

counting bits - an operation discussed since the very
early stages of the establishing of computer science,

(see [I]). The need for a quick bit-counting method

acquires a special significance with the proliferation of
search engines on the Internet. It arises in several other
computer applications. This is especially true in
information retrieval in which an array of binary

vectors is used to represent a characteristic function

(CF) of a set of qualified documents. The number of
"l"s in the CF equals the cardina[ity of the set. The

process of repeated evaluations of this cardinality is a
pivotal point in choosing a rational strategy for deciding
whether to constrain or broaden the search criteria to
ensure selection of the desired items. Another need for

bit-counting occurs when trying to determine the
differences between given files, (images or text), in

terms of the Hamming distance. An Exclusive OR

operation applied to a pair of files results in a binary
vector array of mismatches that must be counted.

The proposed procedure is presumably the best among
the available software methods of bit-counting. It would
retain its value in the future if wide-spread special
realization of bit-counting hardware does not become

cost-effective. Such a fast bit-counting algorithm could
increase the speed at relatively low cost and should

have a spillover effect on the overall higher operation's

speed.

How did the proposed method evolve? It began with a

study of existing approaches. Formally, the bit-counting
problem can be presented as follows: given an array of
binary vectors, it is necessary to determine how many
"l's it contains. Despite the apparent simplicity of the

task, this problem is associated with interesting

algorithmic issues and important applications. (See [2])
The few basic methods used to date are simple in

concept with various degrees of efficiency. They are:

(1) Table Lookup (TL) The counting of the bits is done
using a table that contains the pre-calculated quantities

of "l"s for each entry. The time for getting this number
in one access would be comparable to the time for a
direct hardware realization of the task. However,

operating with words of 32 bits would require a
prohibitively large array of 232 bytes. Thus, though it

is fast, Single-fetch Table Lookup (TL1) is not as yet
practical. Moreover, it becomes impossible when one
considers the near-term prospect of 64 bit words. But

considering the given word divided into two or four
parts can decrease the size of the look-up table. So, for
32 bit words, the size of the required look-up table can

be less, correspondingly, 216 (Double Lookup or TL2)
and 28 words (Quadruple Lookup or TL4). However,

using either of these methods slows down bit-counting
since each requires extra accesses, additions, and

shifting operations.

(2) Shifting (SH) The simplest and most natural
method of counting "l"s in an n-bit number is the
Shifting (SH) method in which each of the bits is

effectively examined by shifting, i.e. given a test array,
C, of n vectors each of length w, each of the n

components would separately count "l "s using w shifts
for its length w, for all n vectors. This method is
straightforward but its execution time is in direct

proportion to nw. As such, it would not be efficient for

large sparse arrays.

(3) Algebraic Logic (AL) A faster bit sum algorithm,
described in [1] and [2], makes use of the way in which
arithmetic is performed on most computers. The

procedure repeatedly re-calculates the number as the
logical sum, ANDing, of the current value of the
number and its decrement by one until the result

becomes zero. Thus its timing is in direct proportion to
the number of set bits rather than to the full machine

word size, (as is the case with SH).

(4) Vertical Counting (VC) The idea of vertical
transformations has been realized in a radical

development in computer architecture - the STARAN

computer of the Goodyear Corporation [3][4]. The VC



methodcanbeconsideredasanemulationof addition
for 32bit registers.TheXOR(ExclusiveOR)gate
determinescorrespondingcharactersthatmismatch
whileANDgatesgeneratecarries.VC incorporates
theseconceptsintoasoftwareequivalent.Initially,as
with thehalf-adder,thecarrybits(thehigherlevel
positions)in theverticalvectorarezero.Thesumvalue
isdel;erminedbybit XORingthecurrentvalueof the
verticalcounter,v_c[i],withthecarrybit for position
zero.Thenthenewvalueof thenextpowerof two
verticalcountervector,v_c[i+l], isdeterminedbybit
ANDingthe currentvalueof that vectorwith the
calculatedcarryvaluefromv_c[i]tocreatebothanew
valueforv c[i+l] andanewcarryvalue.Repeatingthe
ANDing and ORingthroughsuccessivelyhigher
powersof twountilthecalculatedcarryvalueiszero
continuesthis carrypropagation.This methodis
depictedinFigureI. Theutilizationofverticalformat
inbit-countingasexpressedinVChaspreviouslybeen
describedin [5].

Typicaltimingtestresultsformostbasicmethods,AL,
VC, TLI, TL2, andTL4 comparedwith the ideal
(representedbya32-bitmachinesoftwareemulationof
a perfecthardwareimplementation)for various
percentagesof randomlysetbits(from0through100%
instepsof 10)revealedthat,theTLmethodsweremost
consistentlylow(Figure2).But, asdiscussed,they
werenot practical. Clearlya fastermethodwas
required.Theinitial bit countingmethod,VC, had
involvedcountingthebitsandthenconvertingthe
contentsof theVerticalCounterintoregularhorizontal
format.Howeverit wasnotveryfast,O(nlogn).This

was due to the penalties incurred in dense situations in
which extra work is required to approach zero. if the

counting was performed earlier than in VC and was

done using the faster AL method rather than the SH
approach, and if tests for zero were inserted to satisfy

sparse cases, time could clearly be saved. This idea
resulted in the Lower-bit Sieve (LS) Algorithm. The

suggested LS combines the best characteristics of the
VC with those AL. The algorithm operates as follows.

First, the incoming binary vector enters the "Sieve" - a
Vertical Counter of a fixed small number of stages.

Suppose this number were 2. This provides 32 2-bit
registers that become rood 4 counters. These counters

operate as a sieve retaining 2 low-bits and submitting
overflows to the next stage. Thus the next stage only

has to count the bits in quadruplets. As a result,

counting at this stage can take advantage of the faster
operation of the AL technique in sparse vectors. Since
the number of stages in the sieve is small, it can be

presented as a "flat" sequence of instructions rather than
a loop. The time penalty for denser numbers in the AL
method is removed by providing for the AL counting of
the "l"s only in the Vertical Counter array, (which is
less than those which had been in the original number),

without any significant loss of time for the more sparse

cases. In the same way, the slower part of the VC
method, the final count, is improved. It should also be
noted that studies reveal a tendency for the bits

randomly set to one to be evenly distributed as the
number of candidate words increases. Thus similar time

penalties, either proportional to word length as in SH or
to bits set as in AL, associated with counting this denser

Vertical-Counter number would ordinarily be incurred.

But through by-passing the calculation of all carries
beyond some point, and then AL counting the set carry

bits represented at that point, density time difficulties
would be avoided.

Several tests were made to validate these theories.

These tests were to be designated as LSj_k where j was

the power of the highest carry which could ever be
calculated in this instantiation, and k was the number of
inserted zero tests. In these tests, the complete Lower-

bit Sieve (LS) family included second through seventh

carries, (designated as j=2 through 7), and inserted
additional tests for zero to reduce the sparse case

processing time, (designated as k=0 through 6). Clearly,
all members of this LS family of methods would

eliminate time counting all bits and would only count
combinations of bits. The overall effect of this
combination would result in the fastest method of all.

The presented LS technique, depicted in l_igure 3, has a
definite advantage for sparse vectors. This means that
in the case of dense vectors, it would be beneficial to

count "0" bits rather than "1" bits. In general, when the
bit-distribution of binary vectors is not known, the
utilization of this circumstance is uncertain. However,

in the case of information retrieval, certain patterns in
bit-distribution have been observed. Namely, most of

the searching requests result either in "success" - small
number of retrieved items or in a broad definition -

exceedingly many retrieved items. This suggests the

following strategy for the evaluation of the
characteristic vectors: to count "i"s and "0"s

simultaneously. Counting "0" is done by logically

ANDing the number and its increment until the result is
all "l"s and then subtracting the determined count from

the bit-length of the array. The first count process to
finish terminates the other. As both processes run

simultaneously, they can benefit from intrinsic
instruction level parallelism inherent to modern

microprocessors. The actual results of these simulations
were consistent with predicted results. It turns out that

up to the sparsity of about 15%, the combined method
is faster and thus can be recommended for information

retrieval systems.

The results of completed experiments for various
implementations of each level in the family of LS
methods were normalized relative to the ideal (Figure



4).Thesetestsconfirmedthestrengthsofthealgorithm
byshowingaclosesimulationin timefortheassumed
fastest"ideal"method.LS6_4,for example,required
approximately1.8timesthespeedof idealwhileAL
hadrequired9.7timesthatsamevalue.Thoughnoone
LS levelwassignificantlyhigherfor all possible
distributionsofonestestedindividually,whatemerged
wasthefactthattheaveragedispersionof onesfora
particularapplication,i.e.whetherthevectorswere
sparse,oftendeterminedwhichoneof thevariousLS
methodstestedwasthebest.As such,thechoiceis
applicationspecific.Additionaltestsonanative64bit
CRAY machine confirmed the algorithm's
independencefromwordsize.

Whydoesthisproposedprocedureperformsowell?
The algorithmis closeto hardwarein spirit. It
incorporatesprinciplesof verticalapproacheswith
InstructionLevelParallelism(ILP).It alsocompares
wellwiththeidealimplementationsof bit-countingin
super-computersasrepresentedbytheHPFfunction
popcnt().Thusthe currentspeedgaindueto the
suggestedLower-BitSievefamilyof methodswould
enableanefficientautomaticretrievalof qualifying
recordsthroughautomatic,fasttolerancethreshold
adjustment.Suchcriteriamodification,performed
withouttheneedto engagetheuser,couldquicklyand
automaticallytightenrestrictionswhentoovastan
amountofdataqualifiedandloosenthemif littleorno
datawassecured.Sotolerable,user-friendlyaccessto
informationwouldbe enabledwhileaccuracyand
speedaremaintainedwithinreasonablelimits.

[5] SimonBerkovich,EyasE1-Qawasameh,Gennadi
M.Lapir,MarilynMack,ChristopherZincke,

"Organizationof NearMatchinginBit Attribute
Matrix Applied to AssociativeAccess
Methodsin

Information Retrieval", 16th

1ASTEDlnternational Conference on Applied

lnformatics, (Garmisch-Partenkirchen:
lASTED, February 23-25, 1998).

Vertical Counter (V) Input array (B)
v_c 2 1 0

sum:
V[0l^B[i]

carry:

V[O]&B[i]

i _ B[21

_ B[31
e

B[n]

In conclusion, this paper presents a faster approach to

bit-counting that should, through spillover effects, Figure 1: Organization of Vertical Counting (VC)
improve overall performance of higher level operations
in which it is used.

REFERENCES

[1] Derrick H. Lehmer, The Machine Tools of
Combinatorics, in Applied Combinatorial
Mathematics,

Edwin F. Beckenbach [Ed.], (New York, NY:
John Wiley and Sons, Inc., 1964).

[2] Edward M. Reingold, Jurg Nievergelt, and
Narsingh Deo, Combinatorial Algorithms

Theory and Practice, (Englewood Cliffs, NJ:
Prentice-Hall, Inc., I977).
[3] Kenneth J. Thurber and Leon D. Wald, Associative

and Parallel Processors, Computing Surveys,

(New York, NY: ACM, vol. 7, No. 4, December,

1975, pp. 215-255).
[4] Kenneth E. Batcher, The Multidimensional Access

Memory in STARAN, IEEE Transactions on

Computers, (New York, NY: IEEE, vol. C-26, No.
2, February, | 977, pp. 174-177).

"_ w' J Lq

_.5

_0

::, :i

0 I0 20 30 40 50 60 70 80 90 100

Bit Density

Figure 2: Pelformance of the basic bit counting
techniques (normalized to the ideal case: emulated

popcnt)



4

Horizontal Counter

I I Vertical Counter (V) Input array (B)

vi 2 1 0L ...
Lower-bit

ieve (LS)

l',Operation_" t

I;-;,;,:':';':'3

B[1]

B[2I

B[31

B[n]

Figure 3: Model of Lower bit Sieve (LS) - Options for

Vertical Counting method (upper arrow counting all

values) and Lower bit Sieve Method (lower arrow

counting values more efficiently)

25.

Ill
2O I

' Ill51ol

5_

o,_ _:_1 _i i i
10 20 30 4O

llll IlL
IIII II1L__
III1 I!Ii =,_'_'-,--_-_

50 60 70 80 90 1 O0

Bit Density

Figure 4: Performance of the family of Lower bit Sieve

algorithms (normalized to the ideal case: emulated

popcnt)


